A-100
Basic Aviation Safety

Participant Workbook

Prepared by Office of Aviation Services Training Division
and Interagency Aviation Training Partners
Revised November 26, 2013
A-100
Basic Aviation Safety

Version Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2.00</td>
<td>Major Revision – Course objectives, instructor guide, participant workbook, and EPP. Combination of previous modules (A-101, A-105, A-106, A-113) into one course.</td>
<td>1/8/2013</td>
</tr>
<tr>
<td>2.10</td>
<td>Grammatical editing/incorporate comments</td>
<td>6/12/13</td>
</tr>
<tr>
<td>2.20</td>
<td>Grammatical and formatting corrections; PASP added in Appendix.</td>
<td>11/7/13</td>
</tr>
<tr>
<td>2.30</td>
<td>Correlated with IG and PPT edits</td>
<td>11/26/13</td>
</tr>
<tr>
<td>2.40</td>
<td>Updated ALSE Handbook Link & NTSB Incident link</td>
<td>4/4/17</td>
</tr>
</tbody>
</table>
A-100
Basic Aviation Safety

Welcome and Course Introduction
Unit 0

Mission Preparation and Planning
Unit 1

Pilot and Aircraft
Unit 2

Briefings
Unit 3

Operational Safety
Unit 4

Post Flight Duties
Unit 5

Summary

Aviation Toolkit
Welcome and Course Introduction

Get to Know Your Classmates

Be prepared to share:

- Name
- Where do you work?
- How do you use aviation in your current position?
- What types of aviation missions have you been involved in?
- What do you hope to gain from participating in this course?

Course Purpose

The purpose of this course is to provide the aviation user with a foundation of knowledge, skills and abilities to safely utilize aircraft to accomplish agency missions.

Course Unit Objectives

1. Identify the requirements for pre-mission planning.
2. Identify approved methods of aircraft procurement.
3. Identify the four principles of risk management.
4. Apply a risk management process given a scenario.
5. Identify the purpose of a mishap response plan and when it's required.
6. Determine if a specified mission can be conducted, given a pilot and aircraft data card.
7. Differentiate between a mission briefing and an aircraft briefing.
8. Describe four elements of an effective mission briefing.
9. Identify the required items to be covered in an aircraft crew and passenger briefing.
10. Summarize how to properly refuse risk, given a scenario.
11. Define crew resource management.
12. List items to consider during an in-flight emergency.
13. List actions to take if you are first on-scene of an aircraft mishap.
14. List survival considerations if involved in an accident in a remote location.
15. List four aviation “Watch Out” situations when given a scenario.
16. List four questions to ask during a post-flight debrief /AAR.
17. List three actions to be completed at the end of any flight.
18. Identify three situations that would justify a SAFECOM and describe how to submit.
Purpose of the IAT Program

Most agencies utilize aircraft in the support or accomplishment of many of their programs and projects. These aircraft users are as many and varied as the types of aircraft used. An interagency-wide goal is to accomplish safe, efficient, and effective utilization of aviation resources. Increasing employee awareness of agency policy, procedures and safe practices must receive high priority. Aviation training -- whether basic safety, specialized or management -- is a method to increase this awareness and a key to meeting this goal.

The Interagency Aviation Training (IAT) Education, Qualification and Currency System were developed under the direction of the National Interagency Aviation Council (NIAC) for the establishment of aviation training standards for natural resource agency personnel.

Our Missions

The USFS and DOI perform a wide variety of missions. Following are some of examples of those missions:

- Wild Horse/Burro
- Animal Survey
- Resource Flights
- Law Enforcement
- Short-haul
- ACETA
- SAR
Unit 1: Mission Preparation and Planning

Objectives:

After completing this module, participants should be able to:

1. Identify the requirements for pre-mission planning.
2. Identify approved methods of aircraft procurement.
3. Identify the four principles of risk management.
4. Apply a risk management process given a scenario.
5. Identify the purpose of a mishap response plan and when it's required.

Five Steps to a Safe Flight

This card contains the basic elements required to be covered in order to ensure a safe flight. It should be referred to prior to flights and used as a memory jogger to make sure that something isn’t missed. Many mishaps we have had in the past could’ve been prevented if someone had recognized and stopped the chain of events that lead to the accident. Everyone involved in aviation, regardless of experience level, have an obligation to stop unsafe actions/situations when they recognize they are happening.

Twelve Standard Aviation Questions That Shout “Watch Out!”

As part of risk management, especially during high activity fires, each aviation manager and employee should be asking the twelve standard aviation questions that shout “Watch Out!”

1. Is the flight necessary?
2. Who is in charge?
3. Are hazards identified and known? (Have they been identified and assessed? Have the pilots been informed?)
4. Should the operation or the flight be stopped due to a change in conditions? Consider the following:
 a. Radio Communications
 b. Environmental Conditions (weather, visibility, terrain, elevation, temperatures)
 c. Mission Priorities
 d. Successful Mission Completion Probabilities
5. Is there a better way to do it?
6. Is there pressure to complete a mission at all costs?
7. Can you justify your actions?
8. Is the mission airspace confined or congested?
 a. Multiple aircraft
 b. Mixed types of aircraft
 c. Poor visibility
9. Do you have an escape route?
10. Are any rules being broken? (Any guidelines being ignored or policies being broken?)
11. Are communications getting tense?
12. Are you deviating from the assigned operation or flight?

Consider using the Aviation Operations Checklist provided to you (on next page). It is also available in Appendix C.

Research has proven that using a simple checklist can dramatically improve safety.
Aviation Operations Checklist

United States Department of the Interior

Aviation Management Directorate

Pre-Operation Planning

- **Project Aviation Manager and Flight or Helicopter Manager**
 - Yes Approved/Signed/Current Aviation Management Plan?
 - Yes Approved/Signed/Current Project Aviation Safety Plan (PASP)?
 - Yes Operational Risk Assessment completed?
 - Yes Flight hazard map reviewed and flight hazards identified?
 - Yes Approved/Signed/Current Mishap Response Plan?

Management Approval:

- Yes Acceptable risk?
- Yes Pilot/crewmembers in compliance with training requirements?
- Yes Aviation Life Support Equipment (ALSE)?

Operation Briefing and Preflight Plan (continued)

Essential Considerations To Pilot:

- Yes Preflight responsibilities fulfilled?
- Yes Flight-following procedures established?
- Yes Load calculation/weight and balance calculation completed?
- Yes Frequencies obtained?
- Yes Flight plan filed?
- Yes Pilot expectations communicated?

All Personnel Review Including Pilot:

- Yes Project Aviation Safety Plan (PASP)?
- Yes Flight Hazard Map?
- Yes Operational Risk Assessment?
- Yes Mishap Response Plan?

Essential Considerations To Manager:

- Yes Hazardous materials properly planned for? [N/A]
- Yes Safety briefing conducted for all passengers?
- Yes Passenger and cargo manifest completed?

- Yes Aircraft/flight approved for each special use mission and current?
- Yes Pilot and crew flight time/duty day requirements within limits?
- Yes Pilot briefed on mission and inherent hazards?
- Yes Performance Planning Complete?

IF YOU SEE SOMETHING SAY SOMETHING

- **IF YOU ANSWER NO TO ANY OF THE FOLLOWING, STOP REEVALUATE**

- **IF YOU ANSWER NO TO ANY OF THE FOLLOWING, STOP REEVALUATE**

- **IF YOU ANSWER NO TO ANY OF THE ABOVE, STOP REEVALUATE**

During Operation

- **All Personnel**

Essential In-Flight Discipline For All Personnel:

- Yes All personnel have been allowed to express any mission apprehensions and these concerns have been addressed?
- Yes Flight-following procedures being conducted?
- Yes PPE and ALSE being utilized and available?
- Yes Flight hazard map being utilized?
- Yes High reconnaissance flight to identify wires/obstacles that are on the flight hazard map? [N/A]

IF YOU ANSWER NO TO ANY OF THE ABOVE, STOP REEVALUATE
Aviation Policy

DOI and USFS aviation policies are a reflection of past mishaps. Policy is written over time based on lessons learned.

Examples of Federal Aviation Regulations:
- 14 CFR Part 91
- 14 CFR Part 135

Examples of Departmental Policy/USFS National Policy:
- Departmental Manuals (DMs)
- Operational Procedure Memoranda (OPM’s)
- Forest Service Manual (FSM)/Forest Service Handbook (FSH)
- Aviation Life Support Equipment (ALSE) Handbook

Examples of Bureau Policy (DOI)/Regional Policy (USFS):
- NPS RM-60
- USGS SM 445
- FWS Parts 330-339
- BIA BIAM 59
- BOR 114S-37
- BOEMRE MMS Manual Part 485.5
- OSM ADS14
- USFS Regional Aviation Management Plan

Also consider any local unit policies.
- Regional/State Aviation Plans
- Unit Aviation Plans
- Local Standard Operating Procedures (SOP’s)

There is a LOT of policy pertaining to aviation operations. One great resource for finding answers is the Aviation Technical Assistance Directory. It contains contact information for aviation experts in the USFS and most (but not all) of the bureaus in DOI.

If you don’t know, ask!
Mishap Prevention Plan

All agencies should have a formal written mishap prevention plan. Often referred to as an “aviation plan”.

Mishap prevention plans can vary in size and complexity depending on the mission.

There are several types of aviation plans:
- National
- Regional
- Unit
- Project

The typical plan structure for most agencies starts at the National Level and may tier down to the regional or state level, and then down to the unit/forest or park level for recurring routine missions within a unit. For the non-routine and special missions a specific project aviation safety plan is required. We will briefly discuss project plans in this course. Consult your aviation manager if you are not sure where to locate the appropriate aviation plan. “The Bottom Line” is that every flight should be addressed in a formal plan regardless of how routine that flight may seem.

Types of Missions

Aviation missions are categorized into two basic types:

1. **Point-to-Point**: Aviation operations between any two geographic locations operationally suitable for takeoff and landing (airport-to-airport).

2. **Special-Use or Mission Use**: Operations involving the utilization of airplanes and helicopters in support of programs which are not point-to-point flight activities and which require special control measures due to their inherently higher risk. Special pilot qualifications and techniques, special aircraft equipment, and personal protective equipment are required to minimize risk to personnel and property.

Examples of some special-use missions:
- Low level flight (within 500’ of the surface)
- Mountain flying (helicopter)
- Resource reconnaissance
- Fire reconnaissance
- Air tactical group supervision
- Toe-in, single-skid, and step-out landing (helicopter)
- Cargo letdown
- External load - short line ~50' (helicopter)
- External load - longline >50' (helicopter)
- Rappel
- Short-haul
- Offshore platform landings (helicopter)
- Vessel landings
- Water landings - floats or hull (helicopter)
- Wheel operations on unprepared landing areas (airplane)
- Animal darting, paint ball
- Animal eradication
- Animal gathering and capture
- Handheld net gun
- Aerial ignition
- Night vision goggles
- Smoke jumping/paracargo
- Water/retardant application

There are different PPE requirements depending on what type of flight you are conducting. It is up to each individual to know what PPE is required for the flight activity being conducted.
Mission Planning

When planning a mission there are many things that must be considered prior to conducting a mission.

When planning a mission there are many things that must be considered prior to conducting a mission.

1. What’s the Right Tool?

Airplanes:

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Larger landing areas</td>
</tr>
<tr>
<td>Longer range</td>
<td>needed</td>
</tr>
<tr>
<td>Generally less expensive</td>
<td>Limited cargo delivery</td>
</tr>
<tr>
<td>Wide availability</td>
<td>Low wing airplanes reduce visibility</td>
</tr>
<tr>
<td></td>
<td>Limited capability in mountainous terrain</td>
</tr>
</tbody>
</table>

Helicopters:

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can hover</td>
<td>Slow</td>
</tr>
<tr>
<td>External load delivery</td>
<td>Expensive</td>
</tr>
<tr>
<td>Suited for remote operations</td>
<td>Shorter range</td>
</tr>
<tr>
<td>Low level observation</td>
<td>Burns more fuel</td>
</tr>
<tr>
<td>Slow</td>
<td>Noisy</td>
</tr>
<tr>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Good visibility</td>
<td></td>
</tr>
</tbody>
</table>

Example: If you are conducting a wildlife survey over a large area, an airplane would likely be your best option. However, site specific conditions may affect your selection of aircraft. For example, if in mountainous terrain you may need a helicopter to complete the same mission due to terrain considerations.

2. Flight Routes/Areas and Altitudes

- Obstructions
- Airports
- Special hazards
- Airspace
- Congested areas on the surface
3. **Risk Assessment**
 - Required to be performed for each flight
 - Provides a method of quantifying risk
 - Many templates to choose from

4. **Flight Hazard Maps**
 To reduce wire strike potential, a low level flight hazard map **shall** be constructed for the local operational area.
 All preplanned low level flights require a thorough map reconnaissance of the route to be flown.

 To reduce wire strike potential, a low level flight hazard map **shall** be constructed for the local operational area. All preplanned low level flights require a thorough map reconnaissance of the route to be flown.

5. **Objectives**
 - Are they attainable?
 - What does success look like?
 - How do we measure?

6. **Cost**
 - Do you have the authorization to spend the funds?
 - Have you considered cheaper alternatives?
 - Can you defend your decisions?
 - There are many costs you need to consider:
 - Flight time
 - Fuel truck
 - Tie down fees
 - Minimum guarantee of availability
 - Per Diem

7. **Justification**
 - Provides rationale for why aviation is the desired tool
 - Informs all involved of the reason for using aircraft
 - Are you using the right tool for the job?

8. **Approval**
 - Managers should be fully informed of the risks that their employees are taking.
 - Higher risk should require a higher level of approval.
 - When in doubt, **ASK** before you fly.
Project Aviation Safety Plans

In order to ensure the items we just discussed are covered it is imperative to use an organized approach to planning a mission. A great way to do this is by using a Project Aviation Safety Plan (PASP). The PASP should cover all of the required pre-flight planning elements. It also provides a format by which to document your planning process.

1. Types of PASPs
 There are several types of project plans. Some agencies require a specific template, some do not. What’s important is that a plan is completed for every flight. Make sure to allow enough time in advance of the mission to complete the plan.

2. Common Elements of PASP’s
 - Contains project description and objectives
 - Describes who will participate
 - Contains a risk assessment
 - Should be approved at the appropriate level

3. Who completes the PASP?
 - Depends on your individual agency
 - Ask your aviation manager for your agency’s process. Even if you aren’t responsible for planning the mission make sure that a project plan has been developed and approved.

4. Who approves the PASP?
 - Depends on the complexity of the mission.
 - Bottom line
 - Supervisors have a responsibility to know the level of risk their employees are accepting.
Personal Protective Equipment

As missions are planned, there are different PPE requirements depending on the mission and the type of aircraft. The Aviation Life Support Handbook outlines the minimum requirement for PPE. Users should refer to it prior to flight to ensure they are utilizing the proper PPE.

Supervisors are responsible for evaluating aviation activities and providing employees with appropriate the ALSE equipment. Supervisors are also required to provide employee training on the proper use of the ALSE equipment. Individuals are encouraged to supplement these requirements to better meet the needs of the mission and environment.

Minimum PPE Requirement

Flight crewmembers and aircrew members engaged in special use activities, except airplane operations above 500 feet AGL, such as fire recon, resource recon, air tactical use, etc., are required to wear the following the ALSE unless specifically exempted:

- Flight helmet
- Fire-resistant clothing
- All-leather, or leather and NOMEX gloves
- Leather or approved non-leather boots

1. Flight Helmets

If you plan to doing both airplane and helicopter missions, make sure the helmet you purchase can be used for both aircraft. Refer to the ALSE handbook for details.

Helmets provide both hearing and eye protection when used appropriately.

2. Fire-Resistant Clothing

Preferred material is commonly referred to as NOMEX. There are some other types of material that are acceptable. Details can be found in the ALSE Handbook

3. Secondary Restraints
In some cases as secondary restraint system is required when operating an aircraft with the doors off. Refer to the ALSE handbook for specifics.

4. Anti-Exposure Suits

An anti-exposure garment must be worn in single engine aircraft and readily available to occupants of multiengine aircraft when conducting extended overwater flights and when the water temperature is colder than 50°F.

5. Personal Flotation Devices

An inflatable PFD must be worn by all occupants in single engine aircraft and made immediately available to all occupants in multiengine aircraft that are operating off of or to water, or that operate beyond gliding distance from shore including water bucket dipping and snorkeling operations. **NOTE:** The PFD must be USCG approved and not be water activated.

Flight Following

An agency flight plan may be used in lieu of a FAA flight plan. Agency Flight Following is done primarily for those flights taking place within a local geographic area.

Are you prepared to survive?

During mission preparation and planning it is important to consider the worst case scenario that the mission is not successful and the aircraft crashes. Proper PPE, Restraints, and Flight Planning will increase your chances of surviving the initial crash. However, it is just as important to be prepared for surviving the post-crash conditions that you might face following an accident.
Interaction/Activity: Essex, MT Mishap

This interaction will establish a case study that can be discussed in relation to survival preparedness.

The survivors reported that all their gear, including foul-weather clothing, food, sleeping bags and a satellite telephone, remained in the airplane and was destroyed in the fire. After getting out of the airplane, they had only the clothes they were wearing for the flight. The female survivor reported that she was wearing “hiking boots, a pair of black Carhartts, a capilene T-shirt and a hooded sweatshirt.” Her clothes were not significantly fire damaged. She had burns on her hands and a back injury. The male survivor reported that he was wearing two thin polypropylene shirts, wool pants and hiking boots. His shirts and pants were completely burned away in the front. He had burns on his face, hands and chest and a back injury. According to the female survivor, the front passenger was wearing an undershirt, a button-down shirt and a Nomex jacket, jeans and hiking boots. His jeans were burned away from the thigh down, but the Nomex jacket was undamaged. He had a broken leg and burn injuries to his face, hands and legs. The front seat passenger succumbed to his injuries the morning after the accident. At that time, the two survivors decided to depart the site for lower elevation due to extreme cold and precipitation.

A full narrative is available in Appendix A.

What are some of the environment conditions a person may encounter after surviving an aircraft accident?
Survival Considerations:

- Shelter
- Weather
- Warmth/Cool
- Signaling
- Water
- Fire
- Communication
- Ditching

Personal Survival Kit

At a minimum each person should carry, on their person, the following, to maximize their chances of survival. Contents should include:

- Fire starter (can be two boxes of matches in waterproof containers, “metal match” etc.)
- Laser rescue light or key chain LED light
- Signal mirror
- Whistle
- Knife or tool containing a knife blade
- Water purification tablets
- Sealing clear plastic bag(s)
- Personal locator beacon (PLB)
- Radio (If issued one)
- Cell phone
Aircraft Procurement

Once you have a plan, you need and aircraft.

There are several different methods to procure an aircraft. All procured aircraft must be done through DOI or USFS contracts. Examples of different types of contracts are:

1. Exclusive-Use
2. Call-When-Needed or On-Call Contracts
3. Aircraft Rental Agreement
4. End-Product Contract

If you are not sure what method to use, contact your Aviation Manager. Aviation Technical Assistance Directory is a good source of information for contacting the right specialist.

Cooperator Aircraft

USFS and DOI personnel routinely work with cooperator aircraft. Some examples of cooperator aircraft are:

- State
- Military
- Other fed agencies
- Academic institutions
- Utilities
- Foreign government

Fleet Aircraft

Aircraft that are owned by the Bureau/Agency they operate for. In some situations these aircraft are also privately owned by an employee with the Bureau/Agency. These aircraft must follow the guidelines established through Agency manuals.
Fundamentals of Risk Management

1. Accept no unnecessary risk.
2. Make risk decisions at the appropriate level.
3. Only accept risk when benefits outweigh cost.
 Integrate risk management throughout the mission from start to finish.

Risk Management Process

1. Identify hazards.
 • Source of danger
2. Assess hazards.
 • Quantitative determination or qualitative value of risk
3. Develop controls and make decisions.
 • Determine what measures will mitigate the risk.
 • Decide if the risk is acceptable once controls are in place.
4. Implement your controls.
 • PPE
 • Procedure
 • Delay
5. Supervise and evaluate.
 • Determine if the controls are working or if anything has changed that would require the plan to change.
 • If there are changes then the process would start anew.

Methods of Assessing Risk

There are many different tools available to assess risk in an organized manner.

Some examples include:
 • Risk Matrix
 • GAR Model
 • USFS/BLM Risk Management Handbook
 • FAA risk assessment
Interaction/Activity: Rescue Gone Wrong

Take a few minutes and watch the following video. During the video write down any potential hazards that could be associated with this mission. At the conclusion of the video, we will complete one of the risk assessment worksheets (appendix B) and quantify the level of risk.

Be prepared to share some of your findings with your classmates.

Mishap Response Plans

Even with proper planning mishaps can still occur. It is a requirement that agencies develop a written mishap response plan. The Mishap Response Plan serves several purposes:

- It must be specific to the flight/location.
- It should expedite SAR in the event of a mishap.
- Serve as a planning tool.
- It must be validated annually.
- A copy should be with:
 - Dispatch
 - Flight-follower
 - Your base of operations
 - You

Mishap Response Priorities

1. Protect Life.
 - Extraction from remote areas
 - Location of local hospitals and contact information
2. Protect Property.
3. Preserve Evidence.
4. Notify and Investigate.
Objectives:

After completing this module, participants should be able to:

6. Determine if a specified mission can be conducted, given a pilot and aircraft data card.

Carding

1. Pilot Qualification Card
2. Aircraft Data Card
3. Service Vehicle Data Card
4. Mechanic Qualification Card

1. Pilot Qualification Cards
 - Name on card is the person presenting it
 - Company on card is same as company providing service
 - Pilot is authorized for same make and model of aircraft being flown
 - Pilot is carded for the missions you are requesting
 - No expiration has been exceeded, either on front of card or beside specific mission being flown

 There are two types of Pilot Qualification Cards
 - Helicopter
 - Fixed-Wing

2. Aircraft Data Card
 - Point-to-Point Card (DOI or USFS Specific)
 - Interagency Helicopter Card
 - Interagency Airplane Card

 Each aircraft card will contain the following information:
 - Expiration date
 - The N number of the aircraft the card is issued to
 - The specific missions the aircraft is carded for
 - The company the aircraft is carded under
 - The contract number under which the aircraft was initially carded

3. Service Vehicle Data Card
All fuel vehicles that support a contracted aircraft will require an inspection by a Maintenance Inspector. It will then be issued a card that shows that it has been inspected for compliance with all contract specifications. The following should be reviewed when looking at a service vehicle data card:

- Expiration date is still valid
- Company on card is same as company providing service
- Data on card matches the vehicle (Make/Model)
- Tank capacity of vehicle matches that listed on card

4. Mechanic Qualification Card:
Mechanic qualification cards aren't typically issued, but can be found on USFS procured exclusive-use medium helicopter contracts. The reason they are not more widely used is because the DOI and USFS does not require additional skill or equipment beyond what the FAA certifies for as it does for pilots, aircraft and service vehicles.

Note: You may on occasion encounter a Letter of Authorization. The procurement of Non-contracted aircraft typically occurs under a Memorandum Of Understanding (MOU) or some other specified agreement, or is governed by agency manuals. There are two primary types of non-contracted procurement:

- Fleet aircraft:
 Aircraft that are owned by the Bureau / Agency they operate for. In some situations these aircraft are also privately owned by an employee with the Bureau / Agency. These aircraft must follow the guidelines established through Agency manuals.
 Example: The U.S. Fish and Wildlife Service own and operate a fixed wing aircraft for a variety of missions.

- Cooperator aircraft:
 An affiliated, military, or other Government agency aircraft. They are "not for hire" aircraft that may be utilized using an MOU or existing agreement.
 Example: A government employee flying on board a state owned aircraft to complete a mission that both parties have an interest in.
Carding Summary

- Essential that pilots/aircraft are carded.
- Don’t be afraid to ask so see the cards.

If there is a discrepancy or a question contact your aviation manager BEFORE you fly. Or contact the person who issued the card directly. They can be found in the Aviation Technical Assistance Directory in the Aviation Toolkit.
Interaction/Activity: Inspection and Carding Exercise

Given the following cards by a pilot that has just arrived to perform a mission on an on-call contract, answer the following questions.

Take five minutes to answer the questions below using the example cards provided.
Be prepared to discuss results with the group.

1. Mr. James Smith arrives at your airport flying in a black helicopter that has the company name in bright red letters on the side “ACME Helicopters”. It is September 1, 2013 and the Bell 206L4 helicopter has all the necessary equipment to conduct your mission. After asking to see the pilot’s card, do you see any problems with continuing the mission?

2. Is James approved to fly USFS missions?
3. The mission you have planned will require that James “belly hook” several external loads. Is he carded to fly this mission profile?

4. If this mission required landing on the water in fixed floats, would this pilot be able to fly the mission? Why or why not?
Unit 3: Briefings

“Before any flight, it is essential that you brief the pilot about the mission. Also, that you receive an aircraft briefing from the pilot before climbing on board.”

Objectives:

After completing this module, participants should be able to:

7. Differentiate between a mission briefing and an aircraft briefing.
8. Describe four elements of an effective mission briefing.
9. Identify the required items to be covered in an aircraft crew and passenger briefing.
10. Summarize how to properly refuse risk, given a scenario.

Briefings

There are two essential briefings that must take place prior to any flight. A pilot cannot effectively fly a mission and exercise risk management without knowing the details of the flight. This is where a mission briefing becomes essential. You and those who will be flying must also have information that is required by the FAA and plays a part in you being safe during flight activities. This is where an aircraft briefing is required.

1. Mission Briefings
 a. Mission objectives
 b. Hazards
 c. Routes
 d. Communication
 e. Flight following
 f. Emergency Procedures
 g. Roles/Responsibilities
 h. Weight/Balance (manifesting)
 i. Weather
 j. PPE
 k. Mishap Response Plan
 l. Airspace
 m. Risk assessment
n. Sunrise/Sunset

o. Personnel trained, qualified and current for the mission

p. Fueling

q. HAZMAT

r. Cargo loading/unloading

s. Any other items essential to the mission

2. Aircraft Briefing

- Smoking
- Use of safety belts
- Placement of seat backs
- Operation of doors
- Emergency exits
- Survival equipment location
- Fire extinguisher location and operation
- Ditching procedures and PFD if overwater flight
- Use of oxygen if flight above 12,000 feet MSL
- Emergency locator Transmitter location and operation (DOI/USFS requirement)
- Aviation Life Support Equipment proper use (DOI/USFS requirement)
- First aid equipment location (DOI/USFS requirement)

Some additional items that would be good to brief prior to each flight include:

- Aircraft hazards
- How to use the intercom/radio system
- Gear and cargo security (never stored under seats)
- Fuel and oxygen shut-offs
- Battery shut off
Helicopter Safety Briefing

- Wait for the pilot to indicate it is safe to approach.
- Approach and depart in view of the pilot.
- Carry tools parallel to the ground.
- Always approach from downhill.
- Helicopters may be loaded and unloaded with the engine(s) running, as long as a qualified aircrew member attends to the loading/unloading.
- Pilot must remain at controls.
- Always secure loose items.

Link to the mishap listed in slide:

Airplane Safety

- Stay clear of propeller at all times.
- Stay in pilot field of view.
- Both DOI and Forest Service policy require that single engine aircraft be shut down prior to loading and unloading passengers.
 - Forest Service requires both engines be shut down for loading and unloading.

Multi-Engine Airplanes:
 - DOI will allow for engine(s) to remain running as long as certain conditions are met 351DM1.

Floatplane Safety:
 - Do not attempt to “catch” the plane.
 - Step on the float only at pilot’s direction.
 - Stay aft of the wing strut.
 - PFD’s are required for take-off/landings.

Key requirements of every briefing:
1. Door operation
2. Seatbelts
3. Emergency Locator Transmitter
4. First aid and survival kits
5. Cargo
6. Fire extinguisher
7. Fuel and battery shut-off
8. Oxygen
9. Emergency exits
10. Crash positions
11. Smoking
12. Visibility and VFR flight rules
13. Fueling

Refusing Risk

Every individual (government and contract) has the right and obligation to report safety problems affecting his or her safety and has the right to contribute ideas to correct the hazard. In return, supervisors are expected to give these concerns and ideas serious consideration. Individuals may turn down an assignment when:

1. There is a violation of regulated safe aviation practices.
2. Environmental conditions make the work unsafe.
3. They lack the necessary qualifications or expertise.

Individuals will directly inform their supervisor that they are turning down the assignment as given. The most appropriate means of documented turn down criteria is using the Aviation Watch Out Situations.

If the assignment has been turned down previously and the supervisor asks another resource to perform the assignment, he or she is responsible to inform the new resource that the assignment has been turned down and the reasons why. Furthermore, the personnel need to realize that a turn down does not stop the completion of the assigned operation. The turndown protocol is an integral element that improves the effective management of risk, and it provides timely identification of hazards within the chain of command, and raises risk awareness for both supervisors and subordinates and promotes accountability.

If an unresolved safety hazard exists, the individual needs to communicate the issue/event/concern immediately to their supervisor and document as appropriate, including filing an Aviation Safety Communique (SAFECOM).
Unit 4: Operational Safety

“During every flight there are things that need to be considered in order for the flight to be conducted safely.”

Objectives:

After completing this module, participants should be able to:

11. Define crew resource management.
12. List items to consider during an in-flight emergency.
13. List actions to take if you are first on-scene of an aircraft mishap.
14. List survival considerations if involved in an accident in a remote location.
15. List four aviation “Watch Out” situations when given a scenario.

Crew Resource Management

The purpose of CRM is to reduce the number of mishaps through better crew coordination. Several things should be considered when talking about CRM:

1. CRM training topics, including:
 - Briefings
 - Safety
 - Security
 - Self-Critique
 - Conflict resolution
 - Others as appropriate

2. Who do we consider the Crew?
 - Pilots
 - Aircrew Members
 - Aviation Managers
 - Dispatchers
 - Anyone else who is integral to the mission
3. Indicators of good CRM

- Crew is ahead of the curve
- All are involved in planning
- SOP’s/Policy in being followed
- Open Communication
- Thorough briefings
- Everyone knows their roles/responsibilities

4. CRM “Red Flags”

- Deviation from the plan/SOP’s
- Use of improper procedures
- Failing to meet planned targets
- Fixation/preoccupation
- Anger/frustration
- Distraction
- Inappropriate priorities
- Hazardous actions

All aviation users are encouraged to seek out additional CRM training opportunities. In order to master the skills required to maximize coordination, CRM training needs to be on a recurring basis.
Interaction/Activity: Rescue Gone Wrong

List some of the CRM red flags you may have identified during the “Rescue Gone Wrong” video.

How would you address them with the pilot if you were the spotter on the mission?
In-flight Emergencies

Personnel should be prepared for the event of an in-flight emergency. Some of the actions to take are:

- Pilot declares the emergency.
- Protective clothing in use
 - Collars up, sleeves down
 - Visors down on flight helmet
 - Gloves on
- Seat restraints snug
- Keep away from controls
- Secure loose gear (loose gear can become missiles unless they’re secured!)
- Locate emergency exits
- Assume the crash position

WAIT FOR ALL MOTION TO STOP BEFORE EXITING!

Don’t survive a crash only to be killed by flying debris as you depart the aircraft!

Aircraft Mishap Response Actions

Time is extremely critical when responding to an emergency. Immediate positive action is necessary; delay may affect someone’s survival.

If you are the person performing the flight following, initiate the mishap response plan. Follow the directions line by line to ensure that everything is covered.

If you are responding to an aviation accident, or if you are a survivor of an aviation accident, here are some things to consider during rescue operations:

- Preserve life.
- Do whatever is necessary to extricate injured occupants and to extinguish fires.
- Secure the area.
- Document and/or photograph the location of any debris that must be disturbed in order to carry out rescue and/or fire suppression activities.
- Identify witnesses and get contact information.
Mishap reporting:
- Report any event with an aircraft that results in damage or injury, no matter how slight.
- Report an aircraft is overdue and believed to be involved in an accident.
- Report a runway incursion or near mid-air that requires immediate corrective action.
- Report immediately to the DOI/USFS aviation mishap reporting hotline: 1-888-464-7427 (1-888-4MISHAP)

Site Safety Precautions

Aircraft wreckage sites can be hazardous for many reasons other than adverse terrain or climatic conditions. Personnel involved in the recovery, examination, and documentation of wreckage may be exposed to physical hazards such as hazardous cargo, flammable and toxic fluids, sharp or heavy objects, and disease. It’s important to exercise good judgment, use available protective devices and clothing, and use extreme caution when working in the wreckage.

Survival Considerations in Remote Environments

Stay positive. Odds of survival increase when survivors choose not to lose hope. Survivors need to engage their brains in the survival process.

Consider the priorities for survival:
- Shelter
 - From cold
 - From sun
 - Weather
- Fire
- Water
- Communication
- Signaling

Assume you will only get out of the aircraft with what you are carrying on your body. Ensure your personal survival kit is adequate to survive in the environment you will be flying over.

There are many sources for advance survival training. Individuals should determine if additional training is needed for the environment they operate in.
Unit 5: Post Flight Duties

“Now that you’re safely back on the ground there are still some things that need to be done.”

Objectives:

After completing this module, participants should be able to:

16. List four questions to ask during a post-flight debrief/AAR.
17. List three actions to be completed at the end of any flight.
18. Identify three situations that would justify a SAFECOM and describe how to submit.

Close Flight Plan/ Flight Following

Make sure at the end of the flight that the pilot can close out their flight plan or that flight following has been ended.

Remember that a Flight Plan and Flight Following are a pre-emptive request for Search and Rescue. If the plan is not closed out, SAR may be initiated.

Post-Flight Debrief

The climate surrounding a debrief must be one in which the participants openly and honestly discuss what transpired, in sufficient detail and clarity, so everyone understands what did and did not occur and why.

Most importantly, participants should leave with a strong desire to improve their proficiency.

- A debrief is performed immediately after the event, when possible, by the personnel involved.
- The leader’s role is to ensure skilled facilitation of debrief.
- Reinforce that respectful disagreement is okay. Keep focused on “what, not who.”
- Make sure everyone participates.
- End debrief on a positive note.
Discuss the following questions in the post-flight debrief:

1. What was planned?
2. What actually happened?
3. Why did it happen?
4. What can we do next time?
 (Correct weaknesses/sustain strengths)

SAFECOM

Following an aviation event where something did not go as planned, a SAFECOM may be the documentation that helps others to learn valuable lessons.

In the late 1990’s, land management agencies developed an internet-based electronic system for aviation users to report their concerns—the SAFECOM system. Submitting a SAFECOM is not a substitute for on the spot corrections to a safety concern. It is a tool used to identify, document, track and correct safety related issues. The SAFECOM system is not intended to be a punitive. Agency policy is in place to provide guidance to managers on how to use the reports. Once a SAFECOM is submitted, the Regional/State Aviation Safety Manager and the Unit/Forest Aviation Manager are notified via e-mail.

Who can Report?

Anybody and everybody. When in doubt report the situation. It is always best to make the reporting a collaborative effort. This is not always possible, but is a best practice to exercise when able.

What to Report?

Anything that has the POTENTIAL to cause and aviation mishap.

- Conditions
- Observations
- Acts
- Maintenance problems
- Circumstances
Additional Considerations

There are a couple of things that might need to be considered based on the type of procurement and whether the mission is ongoing or complete.

1. Invoicing/Payment
 - Record all times.
 - Keep a record of what was accomplished on the flight.
 - Complete and submit payment information.
 - Complete and send daily diary to contracting officer.

2. Secure Aircraft
 Pilot is responsible for “dual-locking” and securing the aircraft if it is unattended.
 There are many types of locking mechanisms for aircraft.
 Ask the pilot what method they use.
 - Throttle lock
 - Tail rotor lock
 - Battery lock
 - Prop lock
 - Pedal lock
 - Control lock

Summary

1. Proper and thorough pre-flight planning is key in ensuring a safe flight.
2. Pilots and aircraft must be approved for mission.
3. Briefings/Debriefings must take place.
4. Risk management is a constant process.
5. Everyone has an obligation to stop unsafe actions.
6. Follow the “Five Steps” Card and utilize the aviation operations checklist.
7. Review the Twelve Standard Aviation Questions That Shout “Watch out!”
8. Use the toolkit references.
APPENDIX A

Essex Mt – NTSB Report

NTSB Identification: SEA04GA192.
Accident occurred Monday, September 20, 2004 in Essex, MT
Aircraft: Cessna U206G, registration: N206SM
Injuries: 3 Fatal, 2 Serious.

The purpose of the public use flight was to transport four United States Forest Service (USFS) employees to a remote back-country airstrip. The flight’s departure was delayed 2 hours due to heavy rain showers and a thunderstorm. The planned flight route was to follow a highway through a river valley with high terrain (peaks above 8,000 feet) on both sides until reaching a point where the highway diverged from the river. At that point, the flight was to leave the highway and follow the river. Analysis of available weather data indicated that as the airplane proceeded along the river valley, ridge tops on both sides of the valley became obscured. Bases of the overcast were probably about 7,000 feet msl. Ragged clouds and mist were probably present beneath the overcast due to recent rain showers in the area. Slant visibility was likely diminished.

Local pilots reported that in these type weather conditions the numerous drainages that feed into the river valley can be similar in appearance. The pilot made a position call about 15 minutes after takeoff stating that he was over a small town located close to the point where the flight was to leave the highway. This was the last radio communication received from the airplane. Analysis of radar data available for the first 8 minutes of the flight indicated the airplane was not at the position reported by the pilot, but was actually well short of this position. About 15 minutes later, witnesses heard and saw the airplane flying up a drainage located short of the reported position. This drainage ended in a box canyon. Inspection of the accident site indicated that the airplane was in a left climbing turn when it impacted steep terrain near the head of the drainage at an elevation of about 6,600 feet. The airplane nosed over, came to rest inverted, and a fire erupted.

Three of the occupants exited the burning wreckage. All communications equipment, survival equipment and foul-weather gear aboard the airplane were destroyed in the fire. One of the three initial survivors died from his injuries the following morning. At that time, the remaining two survivors decided to depart the site for lower elevation due to extreme cold and precipitation. Searchers found the wreckage later that afternoon. The two survivors walked out to the highway 2 days after the accident. No abnormalities were noted during examination of the airplane that would have prevented normal operation. When the pilot took a check ride that allowed him to act as pilot in command of public use flights carrying passengers into the back-country, he reported to the check pilot that he had 100 hours flight time in “typical terrain (over mountains).” USFS standards required 200 hours flight time in typical terrain. However, the standards did not define typical terrain. Examination of the pilot’s logbook revealed that it did not include a specific record of back country or mountain flying experience. Review of the past 2 years of logbook entries revealed a total of only 15 entries (14 hours flight time) that included a takeoff or landing at a back-country airport.
The National Transportation Safety Board determines the probable cause(s) of this accident as follows:

The pilot’s misidentification of the airplane’s location, which resulted in his improper decision to fly into the wrong drainage, and his failure to maintain terrain clearance while executing a turn to reverse course after he realized his navigational error. Contributing factors were the low visibility due to mist, obscuration of the mountainous terrain, and the pilot’s lack of experience in back country flying.
AVIATION RISK ASSESSMENT WORKSHEET

Assess the risks involved with the proposed operation. Use additional sheets if necessary.

<table>
<thead>
<tr>
<th>Risk Assessment Matrix</th>
<th>HAZARD PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>CATASTROPHIC</td>
<td>I</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>II</td>
</tr>
<tr>
<td>MODERATE</td>
<td>III</td>
</tr>
<tr>
<td>NEGLIGIBLE</td>
<td>IV</td>
</tr>
</tbody>
</table>

Assignment:

Date:

<table>
<thead>
<tr>
<th>Describe Hazard:</th>
<th>Pre-Mitigation hazards rate out as:</th>
<th>Probability (A-E)</th>
<th>Effect (I-IV)</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mitigation Controls:</th>
<th>Post-Mitigation hazards rate out as:</th>
<th>Probability (A-E)</th>
<th>Effect (I-IV)</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GAR Risk Assessment Worksheet

<table>
<thead>
<tr>
<th>Operation:</th>
<th>Scheduled Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective(s):</td>
<td></td>
</tr>
</tbody>
</table>

Supervision	Circle the number as appropriate	
-------------	----------------------------------	
Supervisor has perfect knowledge about the mission, personnel, capabilities and limitations, and is able to apply the appropriate control to minimize risk	1 2 3 4 5 6 7 8 9 10	Supervisor has little knowledge about the mission, personnel, capabilities and limitations, and lacks skill, knowledge or ability to apply the appropriate control to minimize risk.

<table>
<thead>
<tr>
<th>Planning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a well designed plan that is reviewed and revised as needed to meet the demands for safety and efficiency and to account for adaptation. Time is well managed.</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contingency Resources</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable alternative equipment and personnel are available, easily accessed and informed about the mission requirements</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpersonal communications are clear and there is a high level of trust in the organization. Adequate personnel and technology are available to relay information accurately to those who make the decisions</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team Selection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple personnel with skill, knowledge and ability are available to fulfill the requirements of the mission. Selection and preparation are done well in advance so there is plenty of time for personnel to get personal and job related demands addressed.</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Team Fitness</td>
<td>Personnel are trained, proficient, healthy, and rested prior to starting the mission. Personal issues are addressed and little external stress is being exerted.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Personnel lack one or more critical component in their training. These persons have been squeezing in many additional duties as assigned distracting them from their proficiency or personal life.</td>
</tr>
<tr>
<td>Environment</td>
<td>Weather and visibility are conducive to the best possible chance for success in the mission. Operational tempo is appropriate for the mission.</td>
</tr>
<tr>
<td></td>
<td>Winds are unpredictable, temperature is extreme, low ceilings and visibilities, precipitation, sun angle creates strong shadows, etc. Mission tempo is too low or high.</td>
</tr>
<tr>
<td>Mission Complexity</td>
<td>A single agency is involved with personnel from the same unit who regularly work together. Mission is straightforward and covered by standard operating procedures.</td>
</tr>
<tr>
<td></td>
<td>Multiple agencies are involved in a mission that defies definition or has ever been attempted. Personnel are new to each other and come from different cultures. Many leaders are emerging and working toward different objectives.</td>
</tr>
</tbody>
</table>

Mission Total:

Benefit Statement

Operation Approved by:

Date:

Title:

GREEN ZONE (1-35) AMBER ZONE (36-60) RED ZONE (61-80)
APPENDIX C

Aviation Operations Checklist

United States Department of the Interior

Aviation Management Directorate

Pre-Operation Planning

Project Aviation Manager and Flight or Helicopter Manager

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved/Signed/Current Aviation Management Plan?</td>
<td>Yes</td>
</tr>
<tr>
<td>Approved/Signed/Current Project Aviation Safety Plan (PASP)?</td>
<td>Yes</td>
</tr>
<tr>
<td>Operational Risk Assessment completed?</td>
<td>Yes</td>
</tr>
<tr>
<td>Flight hazard map reviewed and flight hazards identified?</td>
<td>Yes</td>
</tr>
<tr>
<td>Approved/Signed/Current Mishap Response Plan?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Management Approval:

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable risk?</td>
<td>Yes</td>
</tr>
<tr>
<td>Pilot/crewmembers in compliance with training requirements?</td>
<td>Yes</td>
</tr>
<tr>
<td>Aviation Life Support Equipment (ALSE)?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Operation Briefing and Preflight Plan (continued)

Essential Considerations To Pilot:

- Preflight responsibilities fulfilled?
- Flight Following procedures established?
- Load calculation/weight and balance calculation completed?
- Frequencies obtained?
- Flight plan filed?
- Pilot expectations communicated?

All Personnel Review Including Pilot:

- Project Aviation Safety Plan (PASP)?
- Flight Hazard Map?
- Operational Risk Assessment?
- Mishap Response Plan?

Passengers and Cargo:

- Hazardous materials properly planned for? N/A
- Safety briefing conducted for all passengers?
- Passenger and cargo manifest completed?

IF YOU ANSWER NO TO ANY OF THE ABOVE, STOP REEVALUATE

Operation Briefing and Preflight Plan

Flight or Helicopter Manager and Pilot/Flight Crew

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm all personnel have introduced themselves by name, qualification and role.</td>
<td>Yes</td>
</tr>
<tr>
<td>Confirm mission objectives, strategies and tactics clear.</td>
<td>Yes</td>
</tr>
<tr>
<td>Is the Weather Forecast Within Limits:</td>
<td>Yes</td>
</tr>
<tr>
<td>Winds?</td>
<td>Yes</td>
</tr>
<tr>
<td>Visibility within minimums?</td>
<td>Yes</td>
</tr>
<tr>
<td>Icing conditions possible? Mitigations and equipment planned.</td>
<td>No</td>
</tr>
</tbody>
</table>

Essential Considerations to Manager:

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft/Pilot approved for each special use mission and current?</td>
<td>Yes</td>
</tr>
<tr>
<td>Pilot and crew flight time/duty day requirements within limits?</td>
<td>Yes</td>
</tr>
<tr>
<td>Pilot briefed on mission and inherent hazards?</td>
<td>Yes</td>
</tr>
<tr>
<td>Performance Planning Complete?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

IF YOU SEE SOMETHING SAY SOMETHING

During Operation

All Personnel

Essential In-Flight Discipline For All Personnel:

- All personnel have been allowed to express any mission apprehensions and these concerns have been addressed?
- Flight Following procedures being conducted?
- PPE and ALSE being utilized and available?
- Flight hazard map being utilized?
- High reconnaissance flight to identify wires/obstacles that are on the flight hazard map. N/A

IF YOU ANSWER NO TO ANY OF THE ABOVE, STOP REEVALUATE
APPENDIX D

Safety Communiqué Form

REPORTED BY: (optional)
- Name:
- E-Mail:
- Phone:
- Cell Phone:
- Pager:
- Organization:
- Organization Other:
- Date Submitted: mm/dd/yyyy

SAFECOM

Aviation Safety Communiqué

<table>
<thead>
<tr>
<th>EVENT</th>
<th>REPORTED BY: (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: mm/dd/yyyy</td>
<td>Local Time: hhmm</td>
</tr>
<tr>
<td>State:</td>
<td>Location: (Airport, City, Lat/Long or Fire Name)</td>
</tr>
</tbody>
</table>

Operational Control:
- Agency:
- Region:
- Unit:

MISSION (* see look-up tables)
- Type: * Other:
- Procurement: * Other:
- Persons Onboard: Special Use: Y/N | Hazardous Materials: Y/N

AIRCRAFT (* see look-up tables)
- Type: * Tail #: Manufacturer: * Model:
- Owner/Operator: Pilot: Manager:

NARRATIVE: (A brief explanation of the event)

CORRECTIVE ACTION: (What was done to correct the problem)
APPENDIX E

Aviation Toolkit

PASP Templates
https://drive.google.com/a/doi.gov/folderview?id=0B_Mulco5V4ESF8xLWMwc3lfUkk&usp=sharing

SAFECOM
https://www.safecom.gov/

Interagency Aviation Training Website
www.iat.gov

5 Steps to a Safe Flight Card
http://oas.doi.gov/safety/library/Guides/orangec.htm

12 Aviation Situations that shout “watch out”
http://www.wildfirelessons.net/documents/6MFS_AviationWatchoutSituations.pdf

ALSE handbook

DOI Policy Link
http://oas.doi.gov/library/index.htm

USFS Policy Link
http://www.fs.fed.us/fire/aviation/av_library/index.html
Technical Assistance Directory

Essex MT NTSB Link

DOI Cooperator Aircraft Policy

FAA Risk Management Handbook

Mishap Response Plan

AOPA Preflight briefing video
http://www.aopa.org/aopalive/?watch=gyeWc0NjrbHv5xaAOSeg-W7t_phACQ9J#ooid=gyeWc0NjrbHv5xaAOSeg-W7t_phACQ9J

Helicopter Safety Video
http://youtu.be/M4Z9mgwbZuY

Gar Model and Risk Matrix

Interagency Aviation User Pocket Guide